

The Role of Medicinal Plants in Agricultural Productivity in Jhunjhunu District, Rajasthan

Dr. Sandeep Jangir¹, Dr. Sneha Jangir², Dr. Mukesh Kumar Sharma³

¹ Principal, Shri Karni Girl's College, Nangli Saledi Singh, Khetri, Jhunjhunu, Rajasthan

² Assistant Professor, Department of Zoology, S.K.D. University, Hanumangarh, Rajasthan

³ Certified Ayurveda Therapist/Practitioner/Consultant (CCAT-NIOS, Gol), Bhatt Pansari, Khetri and Head, Department of Geography, Shri Karni Girl's College, Nangli Saledi Singh, Khetri, Jhunjhunu, Rajasthan

Abstract: Medicinal plants in arid regions like Jhunjhunu district play a multifaceted role not only in traditional healthcare but also in enhancing agricultural productivity, environmental sustainability, and socio-economic development. This study examines the diversity of medicinal plant species in the district, their integration into agricultural systems, and how their cultivation contributes to crop diversification, land utilization, soil health, economic resilience among farmers, and sustainable agriculture. Ethnobotanical field studies, interviews with local farmers, data from Krishi Vigyan Kendra (KVK) Jhunjhunu, and review of existing literature form the basis of the analysis. Findings suggest that medicinal plants serve as alternative crops in marginal lands, support agro-forestry systems, provide secondary income, and conserve biodiversity — all contributing positively toward agricultural productivity in the region. Conservation and policy recommendations are also highlighted..

Keywords: Medicinal plants, agricultural productivity, Jhunjhunu district, agro-forestry, rural livelihoods, biodiversity.

1.1 Introduction

Jhunjhunu district, located in the Shekhawati region of Rajasthan, India, is characterized by an arid to semi-arid climate, sandy soils, and limited water resources. Agriculture here primarily depends on dryland farming practices and traditional crop varieties. Besides conventional crops, the district displays a rich diversity of ethnomedicinal plant species traditionally used for health care and livelihood activities. These species are increasingly recognized for their role in supporting agricultural systems, especially on lands unsuitable for traditional food crops.

Medicinal plants possess significant economic and ecological value, offering alternative avenues for crop diversification, income generation, soil enhancement (when integrated in agro-forestry), and sustainable land use. This paper explores how medicinal plant cultivation interacts with agricultural productivity in Jhunjhunu, considering both ecological and socio-economic dimensions.

1.2 Literature Review

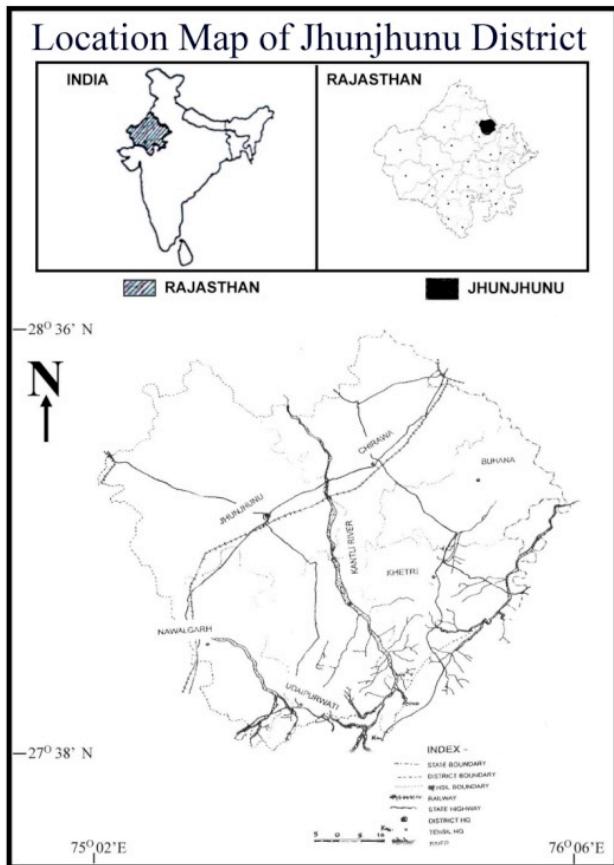
Prior research documents over 120 medicinal plant species in Jhunjhunu used for treating ailments across local communities, reflecting deep ethnobotanical knowledge in the region. Medicinal plants such as *Withania somnifera* (Ashwagandha), *Aloe vera*, and others are noted both within Jhunjhunu and the broader Shekhawati zone for therapeutic properties and livelihoods.

Scholars emphasize the potential of medicinal plants as high-value crops that can generate substantial per-hectare

income relative to traditional crops, especially in marginal lands where conventional agriculture is challenging. Moreover, the Krishi Vigyan Kendra (KVK) in Jhunjhunu actively promotes medicinal plant cultivation as part of its mandate to introduce diversified agricultural enterprises.

1.3 Methodology

This research uses a mixed-methods approach, combining:


1. Field observations and surveys across agricultural and village landscapes in Jhunjhunu.
2. Semi-structured interviews with farmers practicing medicinal plant cultivation and local traditional healers (Vaidyas).
3. Review of secondary data from Krishi Vigyan Kendra (KVK) Jhunjhunu and existing ethnobotanical studies.
4. Analysis of agricultural productivity records involving diversified farm practices incorporating medicinal plant species.

1.6 Study Area

Jhunjhunu district, located in northeastern Rajasthan, has a semi-arid climate with low rainfall (400–550 mm annually) and sandy loam soils. Agriculture, home gardens, and temple premises are primary sites for domestication of medicinal plants. The region is characterized by xerophytic flora adapted to arid conditions.

The district is irregular hexagon in shape in the northeastern part of the State lies between 27°02' east longitudes. It is surrounded by Churu district on the northwestern side Hissar and Mahendragarh district of Haryana State in the northeastern

part and by Sikar district in the west, south and south eastern part-2. For the propose of administration the district is divided into five administrative subdivision viz, Chirawa, Udaipurwati, Jhunjhunu, Khetri and Nawalgarh Six Tehsil viz Jhunjhunu, Chirawa, Khetri, Nawalgarh, Buhana, Udaipurwati and eight Panchyat Samities viz Jhunjhunu, Chirawa, Khetri, Nawalgarh, Buhana, Udaipurwati, Alsisar and Surajgarh.

The total geographical area of the district is 2928 square Kms. This stands at 1.73 percent of the total area of the state from the points of area, Jhunjhunu district stand at 22nd place among the existing 33 districts of the state most of the part of the district is coerce by blow sand and dunes which for part of the great that desert sand shifting and active dunes are main hazards to cultivation. Soil erosion is the Result of constant deforestation and mining activity which have resulted in baring the slopes.

The district encompasses of three distinct geomorphic units.

1. The hilly area in south eastern part of district is characterized by hills of Aravalli range, running in north easterly direction. The highest peak, 1051 m high is in the south of Lohagar village bordering Sikar district. Hills are almost barren of vegetation except a few bushes of acacia and cactus.
2. The undulating area with small isolated hills having steep slope lies in the south western part of district. The major portion of hills is found in Khetri and Udaipurwati tehsils. The general elevation above mean sea level rests between 300 and

450m Quaternary level forms are represented by sand and colluvial deposits of talus and scree at piedmont slopes.

3. The desertic plain generally lying at an altitude of about 300m amsl occupies the northern part of the district and is covered with sand dunes. The general slope of the area is from south to north. Sand dunes are drifting in nature.

District Jhunjhunu is situated in Arid Rajasthan plain known as Rajasthan. It comprises of Rolling hills, some of the arrival ranges in the southeastern side running in the south eastern Direction and range of the Aravali Hills in extreme southeastern of Udaipurwati existing towards Singhana and Khetri in the east, viz Nawalgarh-Khetri upland its general elevation above means sea level is between 300 to 450 meters. The highest peak is in the south of Lohagarh village and its height is 1051 meters, this is no perennial river in the district katti and Dohan are only seasonal rivers. River katti originated from Khadela hill sides of Shrimadhopur Tehsil. Sikar and enters near south west of Udaipurwati tehsil running towards north –west direction and ultimately disappears in the sandy tracks of the Churu District. This river, however, divides the district almost into two parts. Similarly Dohan River also originates from Shrimadhopur hills and flows to north –eastern direction passing through some eastern part and ultimately disappears in sandy tracks of Mahendragarh district of Haryana Besides, there. Major streams of Udaipur Lohagarh ki nadi chandrawati and sukh nadi. There is no lake in the district however small tanks are in existence in some areas. There are only four tanks used for irrigation purposes. There is also a bound of “Ajit Sagar” about 11Km. from Khetri on Nizampur road.

1.4 Results

I. Diversity and Distribution of Medicinal Plants

Medicinal plants in Jhunjhunu are collected from both cultivated and wild areas, with species adapted to arid conditions. Studies show a range of plants from multiple families used locally for treating ailments including respiratory, digestive, skin disorders, and more. Species such as *Withania somnifera* and *Aloe vera* are prominent, with ongoing cultivation and external market demand.

II. Integration into Agricultural Systems

Farmers integrate medicinal plant cultivation primarily in:

1. **Marginal lands and wastelands:** Areas where typical food crops underperform.
2. **Agro-forestry systems:** Where trees and shrubs provide shade, organic matter and diversify production.
3. **Intercropping and crop rotation systems:** To improve land use and reduce crop risk.

The KVK has catalyzed introduction and training for medicinal plant cultivation, recognizing its potential for rural income besides food crop production.

III. Socio-economic Impact

Medicinal plant cultivation yields secondary incomes for smallholders when marketed to herbal industries or local exporters, as seen with exporters in Jhunjhunu trading species like Aloe, Turmeric, and other herbal products. Additionally, generating value from medicinal plants reduces dependence on conventional agriculture in drought years.

1.5 Discussion

I. Enhancing Agricultural Productivity

Medicinal plants contribute to agricultural productivity in several ways:

- 1. Economic diversification:** Farmers earn additional income without solely relying on staple crops.
- 2. Land utilisation:** Wastelands and dry patches that are unsuitable for cereals can support medicinal species, improving overall land productivity.
- 3. Biodiversity and resilience:** Maintaining a range of species enhances ecosystem stability and resilience under climate variability.
- 4. Soil conservation:** Perennial shrubs and trees used in medicinal cultivation can improve soil structure and reduce erosion.

II. Challenges

Despite benefits, challenges include:

- 1. Market access and value chains:** Linking producers with markets sustainably.
- 2. Knowledge gaps:** Need for improved agronomic practices tailored to medicinal crops.
- 3. Conservation concerns:** Ensuring wild medicinal species are not overharvested and biodiversity is maintained.

1.6 Conclusion

Medicinal plants hold a strategic role in enhancing agricultural productivity in Jhunjhunu district by providing alternative revenue streams, optimising land use in arid conditions, enriching biodiversity, and supporting traditional knowledge systems. With appropriate policy support, farmer training, and sustainable market linkages, medicinal plant cultivation can complement conventional agriculture and contribute meaningfully to rural development.

1.7 Recommendations

- Promotion of Medicinal Plant Cultivation:** Extension services should support farmers in selecting species suited to local agro-climatic conditions.
- Value Chain Development:** Establish farmer groups or cooperatives to aggregate produce for better market access.
- Conservation Programs:** Encourage cultivation over wild harvesting to conserve native species.

References

- [1.] Choudhary, M. (2017). Ethno-medicinal plants of Jhunjhunu district, Rajasthan. University of Kota, Rajasthan.
- [2.] Krishi Vigyan Kendra, Jhunjhunu. (2022). Promotion of medicinal plants and diversified crops in Shekhawati region.
- [3.] Krishi Vigyan Kendra, Jhunjhunu. (2021). About KV: Agricultural extension and farmer training programs
- [4.] Singh, R., and Sharma, P. (2018). Biodiversity and ethnobotanical study of plants traditionally used in Jhunjhunu district: A part of Indian Thar Desert.
- [5.] Mendel, A. (2016). Survey of medicinal plant diversity in arid regions of Raj. Journal of Mendel Botany, 3(2), 45–58.
- [6.] Sharma, V., and Mehta, K. (2017). Role of medicinal plants in sustainable agriculture and rural livelihoods in Rajasthan. International Journal of Plant Research, 7(1), 12–25.
- [7.] Sharma M.K. (2007). Medical Plant Geography, Rachana Publication, Jaipur
- [8.] Sharma, M.K. (2018). Applied Phytogeography of Medicinal Plants in Shekhawati Region, Rajasthan (Ph.D. thesis). University of Rajasthan, Jaipur.
- [9.] Sharma M.K. et.al. (2023). Biodiversity of Medicinal Plants. S. N. Publishing Company, Jaipur
- [10.] Sharma M.K. et.al. (2023). Phyto-Chemistry. S. N. Publishing Company, Jaipur
- [11.] Sharma M.K. et.al. (2025). Global Biogeography : Present, Past and Future. S. N. Publishing Company, Jaipur
- [12.] Sharma M.K. (2025) Geographical Basis of Sustainable development for Shekhawati Region, Rajasthan, Journal - Research Reinforcement, Volume-(12), Issue- 2 (Nov.2024 to April-2025) , 2348-3857, p.185-189.
- [13.] Sharma M.K. (2025) Regional Geography and Sustainable development : The Case Study of Shekhawati Region, Rajasthan, Journal -IJGAES, Volume-(13), Issue-1(Jan.- Jun.,2025) , 2348-0254, p.25-33.
- [14.] Justdial. (2023). Medicinal plant exporters in Jhunjhunu.
- [15.] Ministry of Agriculture & Farmers Welfare, Government of India. (2020). Promotion of medicinal plants in India: A policy brief. New Delhi: Government of India.
- [16.] Kaur, R., and Gupta, S. (2019). Ethnobotanical knowledge and utilization of medicinal plants in Shekhawati region. Journal of Ethnobiology and Ethnomedicine, 15(20), 1–12.
- [17.] Joshi, A., and Singh, T. (2018). Economic potential of medicinal plant cultivation in arid zones of Rajasthan. Indian Journal of Traditional Knowledge, 17(4), 645–652.